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1. Introduction & Objectives 
Almost  every  system or  signal  that  scientists  and engineers  deal  with  can be 

viewed in  several  different  ways.  They can exist  as  a  function  of  space,  defined  by 
physical parameters like length, width, height, color intensity, and others. They can exist 
as a function of time, defined by changes in any measurable characteristic. They can also 
exist as a function of frequency, defined by the composition of periodicities that make up 
light, sound, space, or any other dynamic system or signal. Furthermore, since analysis 
techniques differ depending on which domain the signal is being analyzed in, spatial and 
temporal  signals  can  be  converted  into  the  frequency  domain,  or  vice-versa,  for 
mathematical  convenience  or  more  effective  data  acquisition.  Fourier  and  LaPlace 
transforms are the functions used for the conversion between these domains. 

Frequency domain analysis is performed by considering the individual frequency 
components of the full range of frequencies that one such signal is comprised of. A useful 
application for this method is in considering problems like motion blur in images. Since 
devices such as cameras don’t capture an image in an instant, but rather over an exposure 
time, rapid movements cause the acquired image to have blur that represents one object 
occupying multiple positions over this exposure time. In a blurred image, edges appear 
vague and washed out meaning that over those areas their frequency components will be 
similar. Ideally, the edges would be sharp and that would be reflected by a significant 
frequency difference along those edges.  This project  explored the efficiency of using 
frequency domain techniques to remove motion blur from images. 

The overall approach consisted of taking an image, converting it into its spatial 
frequencies, developing a point spread function (PSF) to filter the image with, and then 
converting the filtered result back into the spatial domain to see if blur was removed. This 
was performed in several steps, each of which built from having a greater understanding 
of  the  one  preceding  it.  The first  step  was  taking a  normal  (i.e.  not  blurred)  image, 
creating a known blurring PSF, and then filtering the image so as to add blur to it. The 
next step was removing this blur by various methods, but with the information about the 
PSF that  was  used  to  create  the  blur.  After  that,  de-blurring  was  performed  without 
knowing  anything  about  nature  of  the  blurring  PSF,  except  for  its  size.  Finally,  an 
algorithm  was  developed  for  removing  blur  from  an  already  blurry  image  with  no 
information regarding the blurring PSF. 

2. Methods1

2.1 Blurring
The first process that was performed was creating a point spread function to add 

blur to an image. The blur was implemented by first creating a PSF filter in MatLab that 
would approximate linear motion blur. This PSF was then convolved with the original 
image to produce the blurred image. Convolution is a mathematical process by which a 
signal, in this case the image, is acted on by a system, the filter,  in order to find the 
resulting  signal.  The  amount  of  blur  added  to  the  original  image  depended  on  two 
parameters  of  the  PSF:  length  of  blur  (in  pixels),  and  the  angle  of  the  blur.  These 
attributes were altered to generate different amounts of blur, but ultimately a length of 31 
pixels and an angle of 11 degrees were found to add sufficient motion blur to the image. 

1 See Appendix 5.1 for all code segments used in implementing these algorithms



2.2 Known PSF Deblurring
After a known amount of blur was introduced into the image, an attempt was 

made to restore the now blurred image to its original form. This was done using several 
algorithms. In our treatment, a blurred image, i, results from:

i(x)=s(x)o(x)+n(x)  
Where s  is  the point spread function and is  convolved with the 'perfect'  image o.  In 
addition, some additive noise, n, may be present. The de-blurring algorithms used here 
(Lucy-Richardson, Wiener, and regularized), all attempt to get o, from the equation above 
by means of deconvolution. 

The Weiner filter is an inverse filter that employs a linear deconvolution method. 
Linear deconvolution means that the output (o) is a linear combination of the input. With 
an  inverse  filter  we imagine  that  there  exists  inverse  Fourier  transform of  a  transfer 
function y(x) such that

o(x)=y(x)i(x).
We may change the 1st equation to the frequency domain by using a Fourier transform. 
Neglecting noise, we then have:

I()=()O().
Now the image may have a band limit . In this case it is not good to work close to this 

limit. It has been found that the optimum band width, Wp is given by:

Where fo and fn are the power spectra of the object and noise, respectively.
Given all of this, Norbert Wiener found the optimum transfer function to be

So, for the restored image, we have
O()=Y() I()

Because the Weiner filter is a linear filter, it is computationally less intensive but 
it also gives poorer results when noise is introduced. Higher quality filters, such as the 
Lucy-Richardson, are non-linear. 

The Lucy-Richardson algorithm is derived from counting statistics by means of 
maximizing the likelihood of the solution. The image i is given by 

i(x)=o(x)s(x)

It is assumed that the data in the image i(x) are distributed about the mean, iHxL , of some 

probability distribution PHi È iL . We define the likelihood log to be the natural log of the 
probability and we seek to maximize this quantity. From this we get the Lucy-Richardson 
iteration

òHk +1LHx'L = òk Hx 'L à iHxL
i
`k HxL  sHx, x'L â x

Ù sHx, x'L â x

Where  ò  is and estimation of the un-blurred image,  i is the original image, including 

noise, and i
`
 is given by

i
`k HxL = à òk Hx'L sHx, x 'L â x'

The issue of image restoration may also be viewed as a minimization problem, in 
which the ultimate goal is to generate a positive, smooth solution. Ultimately this results 
in the Lucy-Richardson equation:



â Ë iHxL - òHxL ÄsHxL Ë2 +b à Ë òHxL Ë2 â x

β is some wighting factor that is chosen empirically.

2.3 Limited PSF De-blurring
When the amount of blur is not known at all (as in everyday pictures), we cannot 

use  the  previous  algorithms  as  they  all  require  prior  knowledge  of  the  point  spread 
function that  was used to bur it.  Therefore,  this time we used another  deconvolution 
function called  DECONVBLIND. Its main inputs were the original blurred image, an 
initial guess of the PSF, and the number of iterations it should execute its filter for. 

The deconvblind algorithm was used it in two different ways. In one, it generated 
an initial PSF of a chosen value for LEN and THETA (the direction and angle parameters 
of the blur), and then get size of that PSF for the initial PSF guess, but with all elements 
set to one. In the other, the size of the PSF is simply guessed at, again, with all elements 
set equal to one.  

Additionally,  two optional arguments could be added to "deconvblind" to get a 
deblurred image of a greater quality. The one we used extensively is called WEIGHT. 
We used that option with the “edge" function to find the edges in the original picture: the 
function "edge" assigns a value of one when the function finds edges, and a value of zero 
elsewhere.  Therefore,  when  the  deconvolution  function  is  applied,  it  can  distinguish 
different objects on the picture and will exclude (assign a zero value) to all the "bad" 
pixels (i.e. the blur). It is also possible to assign a threshold for the good pixels to decide 
which ones should be enhanced or dimmed.   

Another option that we tried is called DAMPAR. It compared the original image 
with the deblurred image every time it iterates. When the difference between the same 
pixels in the two images gets below a predefined threshold, the iteration stops for that 
pixel  so  that  it  is  attenuated.  The  consequence  on  the  final  deblurred  image  is  the 
suppression of a lot of noise, preserving the details of the image everywhere else as the 
iteration process continues for the other pixels.

The accuracy of this technique depends heavily on the quality of the initial guess 
of the PSF. If the initial guess for the PSF is very different from the real value and the 
number of iterations is too small, the image will not be deblurred. In fact, poor guess can 
even make the “restored” image look even worse than the original image.
2.4 Deblurring with no PSF Information

The  above  technique  also  has  limitations  as  far  as  real  life  applications  are 
concerned. Since it takes advantage of some knowledge of the PSF used for blurring (the 
PSF’s size), it is inappropriate for use when no information regarding the original PSF is 
known. This is not a very useful technique if we want to make a program that can be used 
by anyone to deblur an arbitrary image, as they would have to have information about 
this  PSF that  they probably just  don’t  know. Therefore,  we found a  way to build an 
algorithm that could systematically deblur images without having to change parameters 
when changing the image to deblur. We found that instead of having to guess an initial 
PSF, we could only tell the size of the matrix we want the PSF to be, then letting the 
algorithm iterate to find the best values. This size turned out to be a 15x15 PSF matrix 
because it fits with almost any kind of picture and gives very good results without taking 
too much time. All the optional inputs that were discussed in the previous section were 
used with this technique too.

An additional challenge to successful deblurring was that sometimes deblurring 
would cause some ringing to appear on the deblurred image. This ringing effect is caused 



by  the  high  frequency  drop-off:  the  deconvolution  functions  uses  discrete  Fourier 
transforms, which assumes periodic frequency pattern of an image. Therefore, there is 
high frequency drop-off where edges are. The function that can be used to solve that 
problem is called EDGETAPER. We used edgetaper before applying the deconvolution, 
and it blurred the edges of the original input image slighty. Since the edges were then less 
sharp the ringing effect was reduced. 

It was pretty difficult to get good results with that technique, as it was difficult to 
find values for weight threshold, number of iterations, and PSF matrix size that could fit 
any picture. After much experimentation, it turned out that the weight threshold should be 
set between .10 and .25, the PSF matrix size should be set to 15x15, and the number of 
iterations should be any number more than 30.2

3. Results
3.1 Qualitative Analysis3

Two main approaches were used to evaluate the results  of the aforementioned 
procedures. The first was a simple qualitative measure of blur removal. A known amount 
of blur, but no noise, was added to an image, and then the image was filtered to remove 
this known amount of blur using Wiener, regularized and Lucy-Richardson deblurring 
methods. The regularized and Wiener techniques produced what appeared to be the best 
results. They were largely able to restore the image to its original form, although it was 
grainier.  This  grainy effect  was  especially  prevalent  in  regions  that  had been low in 
contrast prior to the initial blurring. We believe this to be due to the fact that in low 
contrast  regions  the  blur  factor  smeared  relatively  similar  tones  into  fewer, 
indistinguishable  ones  that  could  not  be  perfectly  restored.  It  was  surprising that  the 
Lucy-Richardson method produced the worst results in this instance, as it is a nonlinear 
technique, and supposedly more advanced. However, after Gaussian noise was added to 
the image in addition to blur, the Lucy-Richardson algorithm actually performed the best. 
This context help make sense of the previous problem because when just blur is added, 
only a linear modification is being made and so the linear Wiener restoration technique 
should  work  the  best.  Introducing  Gaussian  noise,  and  thus  a  degree  of  spatial 
nonlinearity, caused the nonlinear Lucy-Richardson method to produce the best results. 

As information about the PSF that was used to perform the blurring was removed 
from  the  algorithms,  the  efficacy  of  blur  removal  dropped.  In  the  blind  deblurring 
method, the majority of the blur itself was removed, but a lot of the image’s original 
detail was lost and a “ringing” effect could be seen across the entire image. The ringing 
was a result of using a PSF designed to remove blur in areas of high contrast (edges, 
where blur  should  be most  prominent)  over  the entire  image,  and thus creating high 
contrast in waves across the image. The image quality was vastly improved when the 
edge checking function was implemented so that only true edges would receive this edge 
deblurring treatment. 
3.2 Quantitative Analysis4

While qualitative analysis is a good first step for determining whether an image 
processing technique has  succeeded or  not,  quantification of  the  results  is  necessary. 
Quantification  allows  for  a  more  exact  measurement  of  improvement,  and  more 
importantly, allows for comparison between the efficacies of different methods. In this 
instance, quantification was performed by finding the mean pixel intensity value over a 
2 See Appendix 5.1 program 4 for more details
3 See Appendix 5.3 for images used
4 See Appendix 5.2 for result tables 



region,  the  standard  deviation  of  the  pixel  values  over  that  same  region,  and  then 
determining the  image contrast ratio; the ratio of standard deviation to the mean. This 
ratio normalizes the standard deviation so that any changes to the mean intensity caused 
by our filtering technique would not influence determination of filter quality, and acts as 
a direct measure of image contrast. Contrast ratio for a restored image should be higher 
than that  of the original  blurred image.  The reason for this is that  blurring an image 
causes  the pixels  surrounding a  moving edge,  the  area where  motion blur  occurs,  to 
become washed out and all take on similar intensity values. This leads to a low standard 
deviation relative to the mean. Once the image is filtered, however, contrast between the 
edge and the object should be restored and this contrast will cause a higher value for the 
standard deviation to mean ratio. Comparisons between blurred and filtered images were 
made using a parameter of percent improvement5. 

According to Table 1, the technique we developed for blind filtering increased the 
contrast ratio across each of the images that it was used on6 by a little more than 1% each. 
While this does suggest that the overall contrast of each image was improved, it is not the 
most meaningful way to consider the data. Since blur does not occur uniformly across an 
entire image, but rather most significantly along moving edges, the most appropriate way 
to measure the success of our method is to find the contrast ratio across a severely blurred 
region. This was accomplished by isolating a highly blurred subset of the original image, 
and comparing it to the same subset in the filtered image. Table 2 shows that over regions 
of high blur, the contrast ratio for the filtered image is ten to twenty percent greater than 
in the original blurred image – a significant increase. The high contrast ratio came from 
an image (Fish) with computer added blur while the lower contrast ratios were found in 
images (Woman and Train)  with natural  motion blur due to movement  during image 
acquisition exposure time. Because the computer generated blur was more severe than 
natural blur, it makes sense that a greater degree of contrast restoration occurred in the 
image that was blurred computationally. 

Finally, comparisons were drawn between the regularized, Lucy-Richardson, and 
Wiener filtering methods for an image with computationally generated blur under both no 
noise  added,  and  Gaussian  noise  added  conditions.  Table  3  confirms  the  qualitative 
observations that were made, demonstrating that Weiner and regularized techniques show 
almost twice as much improvement over the blurred image than Lucy-Richardson does. 
The results  shown in Table 4,  the efficacy of these techniques  when noise  is  added, 
appear  odd  at  first  glance.  The  extremely  high  values  for  Wiener  and  regularized 
techniques are actually a result of their inability to filter out the noise across the region of 
interest.  This  makes  the  contrast  appear  much  higher  than  it  should  be  for  a  “well 
processed”  image.  The lower,  but  still  reasonable,  contrast  value  found in the  Lucy-
Richardson  method  in  this  instance  actually  represents  that  method’s  superiority  for 
instances in which noise is added. 

4. Conclusions
Through this project, several techniques for frequency domain image processing 

were explored. In the simplest of these, motion blur was added to a deblurred image. In 
the most advanced, blur was filtered out of a partially blurred image when no information 
regarding the blurring PSF was known. This was accomplished by optimizing an edge 
detection algorithm, finding how to set appropriate thresholds for restoring blurred out 

5 Percent Difference = (Filtered Contrast Ratio – Blurred Contrast Ratio)/Blurred Contrast Ratio * 100%
6 See Appendix 5.3 for these images



PSFs, and discerning how many filtering iterations were necessary to remove the blur. 
Ultimately improvements on the order of ten to twenty percent were obtained.

Several standard blur filtering techniques were also compared. If the only blurring 
added  was  linear,  then  the  linear  Wiener  and  regularized  techniques  were  the  most 
efficient.  When  non-linear  noise  was  added,  then  the  non-linear  Lucy-Richardson 
technique was proven best. 

There were minor shortcomings, however. Some of the MatLab functions utilized 
required that the images passed to them as two dimensional arrays.  Since images are 
stored as an JxKx3 matrix, where J and K are the image size and “3” is the number of 
color layers in the image (red, blue, green), images had to be black and white in order to 
be  used  by  those  functions.  This  posed  a  problem  at  first  and  our  initial  solution 
converted all three layers to black and white which had the side effect of displaying our 
image three times.  We were able to solve this  problem through the MatLab function 
“RGB2Gray,” which converts the image to one that is gray scaled. Discovering how to 
maintain the color information of these images would be a good improvement to this 
project. 

Blur analysis also has valuable uses in modern optics. A technique called laser 
speckle  analysis7 is  performed by shining a  coherent  laser  beam onto a  surface  with 
dynamic flow, and the light reflected from this surface is imaged. The flow causes motion 
blur in the acquired image, and the amount of this blur is proportional to the flow rate. 
Analyzing  the  blur  allows  conclusions  to  be  drawn  about  relative  flow rates  on  the 
surface.  In  biomedical  applications  this  leads  to  identification  of  veins,  arteries, 
capillaries  and  occlusions  in  vasculature.  Blur  filtering  is  also  important  in  security 
applications,  where blur  must  be removed from facial  features or objects  in  order to 
recognize a subject.8

All members of this team contributed substantially to the success of this project. 
Joseph Simmons explored the theory behind the deblurring techniques used and helped 
teach  the  rest  of  us  the  concepts  behind  frequency  domain  transformations,  and  the 
deblurring algorithms used. Benjamin Topper optimized the computational algorithms, 
and obtained the data used for quantitative analysis. Avi Wolfson developed the first draft 
of many of the computational algorithms, and did the majority of the writing. We worked 
on this project over the course of one month, and believe that we have increased our 
competency in the subject of image blur filtering accordingly. 

7 Ayata et al. Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and 
Ischemic Mouse Cortex. Cerebral Blood Flow Metabolism. 2004;24(7):744-755
8 Podilchuk, C. Preprocessing for Enhanced Face Recognition. Accessed from 
http://www.caip.rutgers.edu/wiselab



5. Appendix
5.1 Programs & Code Segments
Note: All programs utilized for this project were generated in MatLab

Program 1: Blurring Function
function [Blurred PSF] = AddBlur(I) 
 
figure; imshow(I); title('Original Image');%displays original image
LEN = 31; %the length of the motion blur
THETA = 11; %the angle of the motion blur
PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF,'circular','conv'); %convolves the input image 
with the PSF
figure; imshow(Blurred); title('Blurred Image'); %displays blurred image
figure; imshow(PSF, [], 'InitialMagnification', 'fit') ; %displays PSF

Program 2 : Blurring Function with noise
function [Blurred PSF] = BlurNoise(I) 
 
figure; imshow(I); title('Original Image');%displays original image
LEN = 31; %the length of the motion blur
THETA = 11; %the angle of the motion blur
PSF = fspecial('motion',LEN,THETA); % creates the PSF
Blurred = imfilter(I,PSF,'circular','conv'); %convolves the input image 
with the PSF
Blurred = imnoise(Blurred, 'gaussian') ; %adds the noise
figure; imshow(Blurred); title('Blurred Image'); %displays blurred image
figure; imshow(PSF, [], 'InitialMagnification', 'fit') ; %displays PSF

Program 3 : DeBlurring using Wiener, regularized and Lucy-Richardson algorithms
Note : Input image should already be  blurred
function [wnr reg lucy] = AviDeBlur(I, PSF) 
 
%Wnr Method%
wnr = deconvwnr(I,PSF); % Weiner filtering function
figure;imshow(wnr); %displays deblurred image
title('Wiener Restore');
 
%Regularized Method%
reg = deconvreg(I, PSF) ; % regularized filter
figure; imshow(reg) ; %displays deblurred image
title('Regularized Restore') ;
 
%Lucy-Richardson method%
lucy = deconvlucy(I,PSF); %Lucy-Richardson filtering function
figure;imshow(lucy); %displays deblurred image
title('Lucy-Richardson, True PSF') 



Program 4 : DeBlurring with no PSF information
Note : Input image is already blurred
function [J2 P2] = AviBlindDeBlur(I)  
K=rgb2gray(I); %makes it a black&white image
figure; imshow(K); title('Original Image'); %display original image

PSF = fspecial('Motion',5,45);  %
INITPSF = ones(size(PSF)); %if you want to guess the PSF, include these 
2 last lines. The first line allows you to guess the PSF, second line 
creates a matrix the same size as the one you guessed with 1s elements.

INITPSF=ones(15:15); %guesses the size of the PSF
[J P]= deconvblind(K,INITPSF,150); %tries to deblur – 150 iterations
figure; imshow(J); title('Restored Image'); %displays the "restored" 
image

WEIGHT = edge(K(:,:),'sobel',.10); %create high contrast detecting 
weight array i.e. it finds the edges of objects/people on the image 
which will help to refine guess on PSF – sobel method worked really 
good and seemed to be the fastest. Best threshold for common pictures 
seems to be between 0.10 and .25

se = strel('disk' , 2); 
WEIGHT = 1- double(imdilate(WEIGHT, se));
WEIGHT([1:3 end-[0:2]], :) = 0; WEIGHT(:, [1:3 end-[0:2]]) = 0; %create 
a morphological structuring element, here a disk of radius 2. Octagon 
worked fine too but disk seems more commonly used 

P1 = P; %
P1((P1 < 0.001))=0; %Refines the guess for the PSF by taking into 
account the weight array.
[J2 P2] = deconvblind(K(:,:),P1,6,[],WEIGHT); %constructs new PSF and 
deblurred image w/ weight array

figure; imshow(J2); %displays "new restored" image 
title('Newly Deblurred Image');

Program 5 : Quantifying the results
Note : Inputs are blurred image ,filtered image, and size of area of interest(AoI)
function Quantify(Blurred, Filtered, x1, x2, y1, y2) 
 
figure; imshow(Blurred); title('Blurred'); %blurred image
figure; imshow(Filtered); title('Filtered'); %filtered image
Blurred = Blurred(x1:x2, y1:y2); %picks area of interest 
Filtered = Filtered(x1:x2, y1:y2); % picks same AoI (to be able to 
compare them)
figure; imshow(Blurred); title('Blurred Segment'); %shows AoI on 
blurred image
figure; imshow(Filtered); title('Filtered Segment'); %shows AoI on 
filtered image

BlurredAvg = sum(sum(Blurred))/numel(Blurred) %mean pixel intensity for 
blurred image
Blurred = (Blurred - BlurredAvg).^2 ; %difference between blurred pixel 
intensity and mean pixel intensity



BlurredStdDev=sqrt((1/(numel(Blurred)-1))*sum(sum(Blurred))) %Standard 
Deviation
BlurredRatio = BlurredStdDev/BlurredAvg %Ratio StdDeviation/Mean

FilteredAvg = sum(sum(Filtered))/numel(Filtered) %mean pixel intensity 
for filtered image
Filtered = (Filtered - FilteredAvg).^2 ; %difference between blurred 
pixel intensity and mean pixel intensity
FilteredStdDev = sqrt((1/(numel(Filtered)-1))*sum(sum(Filtered))) 
%Standard Deviation
FilteredRatio = FilteredStdDev/FilteredAvg %Ratio StdDeviation/Mean

5.2 Quantitative Analysis

Pixel Contrast Measurement for Blurred and Filtered Full Images
Image Blurred Ratio Filtered Ratio Improvement (%)
Woman 0.0975 0.0986 1.13%
Train 0.0737 0.0746 1.22%
Fish 0.1027 0.1044 1.66%

Table 1: Deblurring Efficacy for Three Full Images

Pixel Contrast Measurement for Blurred and Filtered Image Segments
Image Blurred Ratio Filtered Ratio Improvement (%)

Woman Segment 0.0323 0.0370 14.55%
Train Segment 0.0520 0.0573 10.19%
Fish Segment 0.0517 0.0630 21.86%

Table 2: Deblurring Efficacy for Three Image Segments

Pixel Contrast Measurement for Various Techniques (No Noise Added)
Technique Blurred Ratio Filtered Ratio Improvement (%)

Wiener 0.0517 0.0606 17.21%
Regularized 0.0517 0.0606 17.21%

Lucy-Richardson 0.0517 0.0563 8.90 %
Table 3: Deblurring Efficacy for Three Filtering Techniques

Pixel Contrast Measurement for Various Techniques (Noise Added)
Technique Blurred Ratio Filtered Ratio Improvement (%)

Wiener 0.0507 0.0692 36.49%
Regularized 0.0507 0.0691 36.29%

Lucy-Richardson 0.0507 0.0543 7.10%
Table 4: Deblurring Efficacy for Three Filtering Techniques with Added Noise



5.3 Images Used
5.3a : Blurred Fish image - no noise

Wiener filter

The blur function applied is linear therefore 
the Wiener filter (which is linear) turns out 
to be the best algorithm to deblut the 
image.

Regularized filter

The regularized was a little worst than the 
Wiener filter to unblur the image.

Lucy Richardson

The Lucy-Richardson turned out to be the 
worst for a simple linear blur, even though 
the image was ok.



5.3b : Blurred Fish image - with gaussian noise

Wiener filter

When gaussian noise is added to the blur, 
Wiener filter gave the worst result.

Regularized filter

Regularized filter was a little better than 
Wiener but still it was a poor quality 
image.

Lucy Richardson algorithm

The Lucy Richardson gave a very good 
result -much better than the two other 
filters. 
Note : Printing degrades quality of  image,  
the higher resolution image is a better  
quality.



5.3c : Deconvlind - deblurring images with no information on the PSF
Woman

Original blurred image

Weight image : recognition of 
objects and people on the picture.

Final unblurred image - some 
ringing effect is visible, but image 
is globally unblurred.



Train

Original blurred image.

Weight image : recognition of the 
little train with the guy on it.

Final unblurred image - with so 
much intial blur, i think this is the 
best we can get !


