
Fourier Filtering for Removing
Motion Blur in Images

Modern Optics – Keto

Joseph Simmons, Benjamin Topper, Avi Wolfson
5/4/2007

1. Introduction & Objectives
Almost every system or signal that scientists and engineers deal with can be

viewed in several different ways. They can exist as a function of space, defined by
physical parameters like length, width, height, color intensity, and others. They can exist
as a function of time, defined by changes in any measurable characteristic. They can also
exist as a function of frequency, defined by the composition of periodicities that make up
light, sound, space, or any other dynamic system or signal. Furthermore, since analysis
techniques differ depending on which domain the signal is being analyzed in, spatial and
temporal signals can be converted into the frequency domain, or vice-versa, for
mathematical convenience or more effective data acquisition. Fourier and LaPlace
transforms are the functions used for the conversion between these domains.

Frequency domain analysis is performed by considering the individual frequency
components of the full range of frequencies that one such signal is comprised of. A useful
application for this method is in considering problems like motion blur in images. Since
devices such as cameras don’t capture an image in an instant, but rather over an exposure
time, rapid movements cause the acquired image to have blur that represents one object
occupying multiple positions over this exposure time. In a blurred image, edges appear
vague and washed out meaning that over those areas their frequency components will be
similar. Ideally, the edges would be sharp and that would be reflected by a significant
frequency difference along those edges. This project explored the efficiency of using
frequency domain techniques to remove motion blur from images.

The overall approach consisted of taking an image, converting it into its spatial
frequencies, developing a point spread function (PSF) to filter the image with, and then
converting the filtered result back into the spatial domain to see if blur was removed. This
was performed in several steps, each of which built from having a greater understanding
of the one preceding it. The first step was taking a normal (i.e. not blurred) image,
creating a known blurring PSF, and then filtering the image so as to add blur to it. The
next step was removing this blur by various methods, but with the information about the
PSF that was used to create the blur. After that, de-blurring was performed without
knowing anything about nature of the blurring PSF, except for its size. Finally, an
algorithm was developed for removing blur from an already blurry image with no
information regarding the blurring PSF.

2. Methods1

2.1 Blurring
The first process that was performed was creating a point spread function to add

blur to an image. The blur was implemented by first creating a PSF filter in MatLab that
would approximate linear motion blur. This PSF was then convolved with the original
image to produce the blurred image. Convolution is a mathematical process by which a
signal, in this case the image, is acted on by a system, the filter, in order to find the
resulting signal. The amount of blur added to the original image depended on two
parameters of the PSF: length of blur (in pixels), and the angle of the blur. These
attributes were altered to generate different amounts of blur, but ultimately a length of 31
pixels and an angle of 11 degrees were found to add sufficient motion blur to the image.

1 See Appendix 5.1 for all code segments used in implementing these algorithms

2.2 Known PSF Deblurring
After a known amount of blur was introduced into the image, an attempt was

made to restore the now blurred image to its original form. This was done using several
algorithms. In our treatment, a blurred image, i, results from:

i(x)=s(x)o(x)+n(x)
Where s is the point spread function and is convolved with the 'perfect' image o. In
addition, some additive noise, n, may be present. The de-blurring algorithms used here
(Lucy-Richardson, Wiener, and regularized), all attempt to get o, from the equation above
by means of deconvolution.

The Weiner filter is an inverse filter that employs a linear deconvolution method.
Linear deconvolution means that the output (o) is a linear combination of the input. With
an inverse filter we imagine that there exists inverse Fourier transform of a transfer
function y(x) such that

o(x)=y(x)i(x).
We may change the 1st equation to the frequency domain by using a Fourier transform.
Neglecting noise, we then have:

I()=()O().
Now the image may have a band limit . In this case it is not good to work close to this

limit. It has been found that the optimum band width, Wp is given by:

Where fo and fn are the power spectra of the object and noise, respectively.
Given all of this, Norbert Wiener found the optimum transfer function to be

So, for the restored image, we have
O()=Y() I()

Because the Weiner filter is a linear filter, it is computationally less intensive but
it also gives poorer results when noise is introduced. Higher quality filters, such as the
Lucy-Richardson, are non-linear.

The Lucy-Richardson algorithm is derived from counting statistics by means of
maximizing the likelihood of the solution. The image i is given by

i(x)=o(x)s(x)

It is assumed that the data in the image i(x) are distributed about the mean, iHxL , of some

probability distribution PHi È iL . We define the likelihood log to be the natural log of the
probability and we seek to maximize this quantity. From this we get the Lucy-Richardson
iteration

òHk +1LHx'L = òk Hx 'L à iHxL
i
`k HxL sHx, x'L â x

Ù sHx, x'L â x

Where ò is and estimation of the un-blurred image, i is the original image, including

noise, and i
`
 is given by

i
`k HxL = à òk Hx'L sHx, x 'L â x'

The issue of image restoration may also be viewed as a minimization problem, in
which the ultimate goal is to generate a positive, smooth solution. Ultimately this results
in the Lucy-Richardson equation:

â Ë iHxL - òHxL ÄsHxL Ë2 +b à Ë òHxL Ë2 â x

β is some wighting factor that is chosen empirically.

2.3 Limited PSF De-blurring
When the amount of blur is not known at all (as in everyday pictures), we cannot

use the previous algorithms as they all require prior knowledge of the point spread
function that was used to bur it. Therefore, this time we used another deconvolution
function called DECONVBLIND. Its main inputs were the original blurred image, an
initial guess of the PSF, and the number of iterations it should execute its filter for.

The deconvblind algorithm was used it in two different ways. In one, it generated
an initial PSF of a chosen value for LEN and THETA (the direction and angle parameters
of the blur), and then get size of that PSF for the initial PSF guess, but with all elements
set to one. In the other, the size of the PSF is simply guessed at, again, with all elements
set equal to one.

Additionally, two optional arguments could be added to "deconvblind" to get a
deblurred image of a greater quality. The one we used extensively is called WEIGHT.
We used that option with the “edge" function to find the edges in the original picture: the
function "edge" assigns a value of one when the function finds edges, and a value of zero
elsewhere. Therefore, when the deconvolution function is applied, it can distinguish
different objects on the picture and will exclude (assign a zero value) to all the "bad"
pixels (i.e. the blur). It is also possible to assign a threshold for the good pixels to decide
which ones should be enhanced or dimmed.

Another option that we tried is called DAMPAR. It compared the original image
with the deblurred image every time it iterates. When the difference between the same
pixels in the two images gets below a predefined threshold, the iteration stops for that
pixel so that it is attenuated. The consequence on the final deblurred image is the
suppression of a lot of noise, preserving the details of the image everywhere else as the
iteration process continues for the other pixels.

The accuracy of this technique depends heavily on the quality of the initial guess
of the PSF. If the initial guess for the PSF is very different from the real value and the
number of iterations is too small, the image will not be deblurred. In fact, poor guess can
even make the “restored” image look even worse than the original image.
2.4 Deblurring with no PSF Information

The above technique also has limitations as far as real life applications are
concerned. Since it takes advantage of some knowledge of the PSF used for blurring (the
PSF’s size), it is inappropriate for use when no information regarding the original PSF is
known. This is not a very useful technique if we want to make a program that can be used
by anyone to deblur an arbitrary image, as they would have to have information about
this PSF that they probably just don’t know. Therefore, we found a way to build an
algorithm that could systematically deblur images without having to change parameters
when changing the image to deblur. We found that instead of having to guess an initial
PSF, we could only tell the size of the matrix we want the PSF to be, then letting the
algorithm iterate to find the best values. This size turned out to be a 15x15 PSF matrix
because it fits with almost any kind of picture and gives very good results without taking
too much time. All the optional inputs that were discussed in the previous section were
used with this technique too.

An additional challenge to successful deblurring was that sometimes deblurring
would cause some ringing to appear on the deblurred image. This ringing effect is caused

by the high frequency drop-off: the deconvolution functions uses discrete Fourier
transforms, which assumes periodic frequency pattern of an image. Therefore, there is
high frequency drop-off where edges are. The function that can be used to solve that
problem is called EDGETAPER. We used edgetaper before applying the deconvolution,
and it blurred the edges of the original input image slighty. Since the edges were then less
sharp the ringing effect was reduced.

It was pretty difficult to get good results with that technique, as it was difficult to
find values for weight threshold, number of iterations, and PSF matrix size that could fit
any picture. After much experimentation, it turned out that the weight threshold should be
set between .10 and .25, the PSF matrix size should be set to 15x15, and the number of
iterations should be any number more than 30.2

3. Results
3.1 Qualitative Analysis3

Two main approaches were used to evaluate the results of the aforementioned
procedures. The first was a simple qualitative measure of blur removal. A known amount
of blur, but no noise, was added to an image, and then the image was filtered to remove
this known amount of blur using Wiener, regularized and Lucy-Richardson deblurring
methods. The regularized and Wiener techniques produced what appeared to be the best
results. They were largely able to restore the image to its original form, although it was
grainier. This grainy effect was especially prevalent in regions that had been low in
contrast prior to the initial blurring. We believe this to be due to the fact that in low
contrast regions the blur factor smeared relatively similar tones into fewer,
indistinguishable ones that could not be perfectly restored. It was surprising that the
Lucy-Richardson method produced the worst results in this instance, as it is a nonlinear
technique, and supposedly more advanced. However, after Gaussian noise was added to
the image in addition to blur, the Lucy-Richardson algorithm actually performed the best.
This context help make sense of the previous problem because when just blur is added,
only a linear modification is being made and so the linear Wiener restoration technique
should work the best. Introducing Gaussian noise, and thus a degree of spatial
nonlinearity, caused the nonlinear Lucy-Richardson method to produce the best results.

As information about the PSF that was used to perform the blurring was removed
from the algorithms, the efficacy of blur removal dropped. In the blind deblurring
method, the majority of the blur itself was removed, but a lot of the image’s original
detail was lost and a “ringing” effect could be seen across the entire image. The ringing
was a result of using a PSF designed to remove blur in areas of high contrast (edges,
where blur should be most prominent) over the entire image, and thus creating high
contrast in waves across the image. The image quality was vastly improved when the
edge checking function was implemented so that only true edges would receive this edge
deblurring treatment.
3.2 Quantitative Analysis4

While qualitative analysis is a good first step for determining whether an image
processing technique has succeeded or not, quantification of the results is necessary.
Quantification allows for a more exact measurement of improvement, and more
importantly, allows for comparison between the efficacies of different methods. In this
instance, quantification was performed by finding the mean pixel intensity value over a
2 See Appendix 5.1 program 4 for more details
3 See Appendix 5.3 for images used
4 See Appendix 5.2 for result tables

region, the standard deviation of the pixel values over that same region, and then
determining the image contrast ratio; the ratio of standard deviation to the mean. This
ratio normalizes the standard deviation so that any changes to the mean intensity caused
by our filtering technique would not influence determination of filter quality, and acts as
a direct measure of image contrast. Contrast ratio for a restored image should be higher
than that of the original blurred image. The reason for this is that blurring an image
causes the pixels surrounding a moving edge, the area where motion blur occurs, to
become washed out and all take on similar intensity values. This leads to a low standard
deviation relative to the mean. Once the image is filtered, however, contrast between the
edge and the object should be restored and this contrast will cause a higher value for the
standard deviation to mean ratio. Comparisons between blurred and filtered images were
made using a parameter of percent improvement5.

According to Table 1, the technique we developed for blind filtering increased the
contrast ratio across each of the images that it was used on6 by a little more than 1% each.
While this does suggest that the overall contrast of each image was improved, it is not the
most meaningful way to consider the data. Since blur does not occur uniformly across an
entire image, but rather most significantly along moving edges, the most appropriate way
to measure the success of our method is to find the contrast ratio across a severely blurred
region. This was accomplished by isolating a highly blurred subset of the original image,
and comparing it to the same subset in the filtered image. Table 2 shows that over regions
of high blur, the contrast ratio for the filtered image is ten to twenty percent greater than
in the original blurred image – a significant increase. The high contrast ratio came from
an image (Fish) with computer added blur while the lower contrast ratios were found in
images (Woman and Train) with natural motion blur due to movement during image
acquisition exposure time. Because the computer generated blur was more severe than
natural blur, it makes sense that a greater degree of contrast restoration occurred in the
image that was blurred computationally.

Finally, comparisons were drawn between the regularized, Lucy-Richardson, and
Wiener filtering methods for an image with computationally generated blur under both no
noise added, and Gaussian noise added conditions. Table 3 confirms the qualitative
observations that were made, demonstrating that Weiner and regularized techniques show
almost twice as much improvement over the blurred image than Lucy-Richardson does.
The results shown in Table 4, the efficacy of these techniques when noise is added,
appear odd at first glance. The extremely high values for Wiener and regularized
techniques are actually a result of their inability to filter out the noise across the region of
interest. This makes the contrast appear much higher than it should be for a “well
processed” image. The lower, but still reasonable, contrast value found in the Lucy-
Richardson method in this instance actually represents that method’s superiority for
instances in which noise is added.

4. Conclusions
Through this project, several techniques for frequency domain image processing

were explored. In the simplest of these, motion blur was added to a deblurred image. In
the most advanced, blur was filtered out of a partially blurred image when no information
regarding the blurring PSF was known. This was accomplished by optimizing an edge
detection algorithm, finding how to set appropriate thresholds for restoring blurred out

5 Percent Difference = (Filtered Contrast Ratio – Blurred Contrast Ratio)/Blurred Contrast Ratio * 100%
6 See Appendix 5.3 for these images

PSFs, and discerning how many filtering iterations were necessary to remove the blur.
Ultimately improvements on the order of ten to twenty percent were obtained.

Several standard blur filtering techniques were also compared. If the only blurring
added was linear, then the linear Wiener and regularized techniques were the most
efficient. When non-linear noise was added, then the non-linear Lucy-Richardson
technique was proven best.

There were minor shortcomings, however. Some of the MatLab functions utilized
required that the images passed to them as two dimensional arrays. Since images are
stored as an JxKx3 matrix, where J and K are the image size and “3” is the number of
color layers in the image (red, blue, green), images had to be black and white in order to
be used by those functions. This posed a problem at first and our initial solution
converted all three layers to black and white which had the side effect of displaying our
image three times. We were able to solve this problem through the MatLab function
“RGB2Gray,” which converts the image to one that is gray scaled. Discovering how to
maintain the color information of these images would be a good improvement to this
project.

Blur analysis also has valuable uses in modern optics. A technique called laser
speckle analysis7 is performed by shining a coherent laser beam onto a surface with
dynamic flow, and the light reflected from this surface is imaged. The flow causes motion
blur in the acquired image, and the amount of this blur is proportional to the flow rate.
Analyzing the blur allows conclusions to be drawn about relative flow rates on the
surface. In biomedical applications this leads to identification of veins, arteries,
capillaries and occlusions in vasculature. Blur filtering is also important in security
applications, where blur must be removed from facial features or objects in order to
recognize a subject.8

All members of this team contributed substantially to the success of this project.
Joseph Simmons explored the theory behind the deblurring techniques used and helped
teach the rest of us the concepts behind frequency domain transformations, and the
deblurring algorithms used. Benjamin Topper optimized the computational algorithms,
and obtained the data used for quantitative analysis. Avi Wolfson developed the first draft
of many of the computational algorithms, and did the majority of the writing. We worked
on this project over the course of one month, and believe that we have increased our
competency in the subject of image blur filtering accordingly.

7 Ayata et al. Laser Speckle Flowmetry for the Study of Cerebrovascular Physiology in Normal and
Ischemic Mouse Cortex. Cerebral Blood Flow Metabolism. 2004;24(7):744-755
8 Podilchuk, C. Preprocessing for Enhanced Face Recognition. Accessed from
http://www.caip.rutgers.edu/wiselab

5. Appendix
5.1 Programs & Code Segments
Note: All programs utilized for this project were generated in MatLab

Program 1: Blurring Function
function [Blurred PSF] = AddBlur(I)

figure; imshow(I); title('Original Image');%displays original image
LEN = 31; %the length of the motion blur
THETA = 11; %the angle of the motion blur
PSF = fspecial('motion',LEN,THETA); % create PSF
Blurred = imfilter(I,PSF,'circular','conv'); %convolves the input image
with the PSF
figure; imshow(Blurred); title('Blurred Image'); %displays blurred image
figure; imshow(PSF, [], 'InitialMagnification', 'fit') ; %displays PSF

Program 2 : Blurring Function with noise
function [Blurred PSF] = BlurNoise(I)

figure; imshow(I); title('Original Image');%displays original image
LEN = 31; %the length of the motion blur
THETA = 11; %the angle of the motion blur
PSF = fspecial('motion',LEN,THETA); % creates the PSF
Blurred = imfilter(I,PSF,'circular','conv'); %convolves the input image
with the PSF
Blurred = imnoise(Blurred, 'gaussian') ; %adds the noise
figure; imshow(Blurred); title('Blurred Image'); %displays blurred image
figure; imshow(PSF, [], 'InitialMagnification', 'fit') ; %displays PSF

Program 3 : DeBlurring using Wiener, regularized and Lucy-Richardson algorithms
Note : Input image should already be blurred
function [wnr reg lucy] = AviDeBlur(I, PSF)

%Wnr Method%
wnr = deconvwnr(I,PSF); % Weiner filtering function
figure;imshow(wnr); %displays deblurred image
title('Wiener Restore');

%Regularized Method%
reg = deconvreg(I, PSF) ; % regularized filter
figure; imshow(reg) ; %displays deblurred image
title('Regularized Restore') ;

%Lucy-Richardson method%
lucy = deconvlucy(I,PSF); %Lucy-Richardson filtering function
figure;imshow(lucy); %displays deblurred image
title('Lucy-Richardson, True PSF')

Program 4 : DeBlurring with no PSF information
Note : Input image is already blurred
function [J2 P2] = AviBlindDeBlur(I)
K=rgb2gray(I); %makes it a black&white image
figure; imshow(K); title('Original Image'); %display original image

PSF = fspecial('Motion',5,45); %
INITPSF = ones(size(PSF)); %if you want to guess the PSF, include these
2 last lines. The first line allows you to guess the PSF, second line
creates a matrix the same size as the one you guessed with 1s elements.

INITPSF=ones(15:15); %guesses the size of the PSF
[J P]= deconvblind(K,INITPSF,150); %tries to deblur – 150 iterations
figure; imshow(J); title('Restored Image'); %displays the "restored"
image

WEIGHT = edge(K(:,:),'sobel',.10); %create high contrast detecting
weight array i.e. it finds the edges of objects/people on the image
which will help to refine guess on PSF – sobel method worked really
good and seemed to be the fastest. Best threshold for common pictures
seems to be between 0.10 and .25

se = strel('disk' , 2);
WEIGHT = 1- double(imdilate(WEIGHT, se));
WEIGHT([1:3 end-[0:2]], :) = 0; WEIGHT(:, [1:3 end-[0:2]]) = 0; %create
a morphological structuring element, here a disk of radius 2. Octagon
worked fine too but disk seems more commonly used

P1 = P; %
P1((P1 < 0.001))=0; %Refines the guess for the PSF by taking into
account the weight array.
[J2 P2] = deconvblind(K(:,:),P1,6,[],WEIGHT); %constructs new PSF and
deblurred image w/ weight array

figure; imshow(J2); %displays "new restored" image
title('Newly Deblurred Image');

Program 5 : Quantifying the results
Note : Inputs are blurred image ,filtered image, and size of area of interest(AoI)
function Quantify(Blurred, Filtered, x1, x2, y1, y2)

figure; imshow(Blurred); title('Blurred'); %blurred image
figure; imshow(Filtered); title('Filtered'); %filtered image
Blurred = Blurred(x1:x2, y1:y2); %picks area of interest
Filtered = Filtered(x1:x2, y1:y2); % picks same AoI (to be able to
compare them)
figure; imshow(Blurred); title('Blurred Segment'); %shows AoI on
blurred image
figure; imshow(Filtered); title('Filtered Segment'); %shows AoI on
filtered image

BlurredAvg = sum(sum(Blurred))/numel(Blurred) %mean pixel intensity for
blurred image
Blurred = (Blurred - BlurredAvg).^2 ; %difference between blurred pixel
intensity and mean pixel intensity

BlurredStdDev=sqrt((1/(numel(Blurred)-1))*sum(sum(Blurred))) %Standard
Deviation
BlurredRatio = BlurredStdDev/BlurredAvg %Ratio StdDeviation/Mean

FilteredAvg = sum(sum(Filtered))/numel(Filtered) %mean pixel intensity
for filtered image
Filtered = (Filtered - FilteredAvg).^2 ; %difference between blurred
pixel intensity and mean pixel intensity
FilteredStdDev = sqrt((1/(numel(Filtered)-1))*sum(sum(Filtered)))
%Standard Deviation
FilteredRatio = FilteredStdDev/FilteredAvg %Ratio StdDeviation/Mean

5.2 Quantitative Analysis

Pixel Contrast Measurement for Blurred and Filtered Full Images
Image Blurred Ratio Filtered Ratio Improvement (%)
Woman 0.0975 0.0986 1.13%
Train 0.0737 0.0746 1.22%
Fish 0.1027 0.1044 1.66%

Table 1: Deblurring Efficacy for Three Full Images

Pixel Contrast Measurement for Blurred and Filtered Image Segments
Image Blurred Ratio Filtered Ratio Improvement (%)

Woman Segment 0.0323 0.0370 14.55%
Train Segment 0.0520 0.0573 10.19%
Fish Segment 0.0517 0.0630 21.86%

Table 2: Deblurring Efficacy for Three Image Segments

Pixel Contrast Measurement for Various Techniques (No Noise Added)
Technique Blurred Ratio Filtered Ratio Improvement (%)

Wiener 0.0517 0.0606 17.21%
Regularized 0.0517 0.0606 17.21%

Lucy-Richardson 0.0517 0.0563 8.90 %
Table 3: Deblurring Efficacy for Three Filtering Techniques

Pixel Contrast Measurement for Various Techniques (Noise Added)
Technique Blurred Ratio Filtered Ratio Improvement (%)

Wiener 0.0507 0.0692 36.49%
Regularized 0.0507 0.0691 36.29%

Lucy-Richardson 0.0507 0.0543 7.10%
Table 4: Deblurring Efficacy for Three Filtering Techniques with Added Noise

5.3 Images Used
5.3a : Blurred Fish image - no noise

Wiener filter

The blur function applied is linear therefore
the Wiener filter (which is linear) turns out
to be the best algorithm to deblut the
image.

Regularized filter

The regularized was a little worst than the
Wiener filter to unblur the image.

Lucy Richardson

The Lucy-Richardson turned out to be the
worst for a simple linear blur, even though
the image was ok.

5.3b : Blurred Fish image - with gaussian noise

Wiener filter

When gaussian noise is added to the blur,
Wiener filter gave the worst result.

Regularized filter

Regularized filter was a little better than
Wiener but still it was a poor quality
image.

Lucy Richardson algorithm

The Lucy Richardson gave a very good
result -much better than the two other
filters.
Note : Printing degrades quality of image,
the higher resolution image is a better
quality.

5.3c : Deconvlind - deblurring images with no information on the PSF
Woman

Original blurred image

Weight image : recognition of
objects and people on the picture.

Final unblurred image - some
ringing effect is visible, but image
is globally unblurred.

Train

Original blurred image.

Weight image : recognition of the
little train with the guy on it.

Final unblurred image - with so
much intial blur, i think this is the
best we can get !

